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Abstract. The finite-size critical properties of the O(n) vector ϕ4 model, with long-range interaction
decaying algebraically with the interparticle distance r like r−d−σ, are investigated. The system is confined
to a finite geometry subject to periodic boundary condition. Special attention is paid to the finite-size
correction to the bulk susceptibility above the critical temperature Tc. We show that this correction has a
power-law nature in the case of pure long-range interaction i.e. 0 < σ < 2 and it turns out to be exponential
in case of short-range interaction i.e. σ = 2. The results are valid for arbitrary dimension d, between the
lower (d< = σ) and the upper (d> = 2σ) critical dimensions.

PACS. 05.70.Jk Critical point phenomena – 64.60.Ak Renormalization-group, fractal, and percolation
studies of phase transitions – 64.60.Fr Equilibrium properties near critical points, critical exponents

1 Introduction

The critical behaviour at a second order phase transition
depends upon the dimensionality d, degrees of freedom
n, symmetry of the Hamiltonian (either in spin-space or
in coordinate space) and interaction potentials. Generally
speaking, the nature of the potential of the model un-
der consideration can describe different physical situations
(for a review see reference [1]). The simplest interaction
potential, which has attracted the attention of investiga-
tors, is the one corresponding to long-range ferromagnetic
interaction decaying algebraically with the spin interdis-
tance r as r−d−σ, where d is the dimension of the system
and σ is the parameter controlling the range of the inter-
action. The interest in such type of interaction is tightly
related to the exploration of the critical behaviour of sys-
tems with restricted dimensionality, in which no phase
transitions occur otherwise.

The investigation of systems with long-range interac-
tion was initiated by Joyce in his paper on the ferro-
magnetic spherical model [2]. The results of Joyce were
generalized to the O(n) vector ϕ4 model by means of
perturbation theory in combination with the renormal-
ization group techniques [3–7] and the 1/n-expansion [8].
These investigations were also extended to dynamical crit-
ical phenomena (see Ref. [9] and references therein). Com-
puter simulations also contributed in the exploration of
the critical properties of such systems [10–12]. The re-
sults of these simulations, obtained by means of the Monte
Carlo method, concerned mainly systems with classical
critical behaviour, in the sense that the critical exponents
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are those belonging to the Landau theory. Rigorous results
were obtained for low dimensional systems with long-range
interaction (see reference [13,14] and references therein).

The analytic exploration of the scaling properties of
confined systems with long-range interaction took its
starting point on the spherical model. The reason for
choosing that model is the relatively simple nature of the
mathematical expression entering the equations character-
izing its thermodynamics (for a complete set of references
on the subject see reference [15]). Very recently these in-
vestigations were extended to O(n) vector models [16,17],
using the renormalization group approach and the ε ex-
pansion to the one-loop order. In reference [16] the Binder
cumulant has been evaluated at the vicinity of the criti-
cal temperature. It has been found that the expression for
that quantity can be deduced just by choosing an appro-
priate rescaling of the parameters in that evaluated for
short-range interaction case. The authors of reference [17]
evaluated the susceptibility at the critical temperature
Tc, as well as in the region, determined by the condition
L/ξ � 1, where L is the linear size of the system and ξ –
the bulk correlation length. In this region the bulk criti-
cal behaviour dominates the finite-size critical one. It has
been shown that the finite-size correction to the bulk crit-
ical properties of the system has a power-law nature. This
result is distinct from that obtained for the case of short-
range interaction, where the finite-size correction falls-off
exponentially.

In this paper we will investigate the finite-size scaling
in a system with ferromagnetic long-range interaction at
a fixed dimension d with d< < d < d>. The parameters
d< = σ and d> = 2σ are, respectively, the lower and upper
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critical dimensions of the model, with σ ≤ 2. To this end
we will use the approach developed in references [18–20].
This method has been used successfully for the evaluation
of critical exponents, as well as, critical amplitudes for var-
ious thermodynamic functions in the ϕ4 model with short-
range potential. The most important property of this
approach is that the quadratic (temperature-dependent)
term does not enter explicitly the expansions, which can
be used for both sides of the critical temperature Tc. This
method has been also used for the investigation of the the-
ory of finite size-scaling [21–23]. While a perfect agreement
between the analytical results of reference [21] and those
obtained by Monte Carlo simulations has been reported
in reference [24], references [22,23] showed disagreements
with some of the known results. In particular we would like
to emphasize their finding of the non-exponential decay of
finite-size corrections to the bulk critical behaviour.

We will consider spin system consisting of n-
component unit vectors associated with d-dimensional lat-
tice and interacting via a pair potential of the general
translationally invariant form. The Hamiltonian of this
model is given by

βH{ϕ} =
1
2

∫
V

ddx
[
a (∇ϕ)2 + b

(
∇σ/2ϕ

)2

+ r0ϕ
2 +

1
2
u0ϕ

4

]
,

(1.1)

where ϕ is a short hand notation for the space dependent
n-component field ϕ(x), r0 = r0c + t0 (t0 ∝ T − Tc), a, b
and u0 are model constants. V ≡ Ld is the volume of the
system. In equation (1.1), we assumed ~ = kB = 1 and
the size scale is measured in units in which the velocity of
excitations c = 1. We note that the operator∇σ is defined
by its Fourier transform

∇σf(x) ≡ −L−d
∑
k

∫
ddx′eik(x−x′)|k|σf(x′).

The parameter β is set for the inverse temperature. Here
we will consider periodic boundary conditions. This means

ϕ(x) = L−d
∑
k

ϕ(k) exp (ik · x) , (1.2)

where k is a discrete vector with components ki = 2πni/L
(ni = 0,±1,±2, · · · , i = 1, · · · , d) and a cutoff Λ ∼ a−1

(a is the lattice spacing). In this paper, we are interested
in the continuum limit i.e. a → 0. As long as the sys-
tem is finite we have to take into account the following
assumptions L/a→∞, ξ →∞ while ξ/L is finite.

The critical behaviour of the model Hamiltonian (1.1),
has been investigated in details in the early 70’s. The
main focus of interest has been turned to the evaluation of
the critical exponents. Using renormalization group tech-
niques, it has been shown that the critical behaviour of
this model is dominated by the long-range interaction for
0 < σ < 2 [3,5]. In this case the critical exponents are σ
dependent, in particular the Fisher exponent ησ = 2− σ.

As long as σ becomes of the same order as 2 − η2, where
η2 is the Fisher exponent of the short-range model, a
crossover from the long-range critical behaviour to the
short-range critical one takes place [4,6,7]. For σ ≥ 2− η2

the critical behaviour is dominated by the short-range in-
teraction and the critical exponents are those of the pure
short-range model. Another way to establish the relevance
of the long range term for σ < 2− η2 is presented in ref-
erence [25].

The plan of this paper is as follows. In Section 2 we de-
scribe the renormalization scheme for the bulk ϕ4 theory
with long-range interaction. In Section 3 we discuss the ef-
fects of confined geometries on the bulk critical behaviour.
We investigate the influence of the long-range interaction
on the finite-size correction to the bulk critical behaviour.
In Section 4 we discuss our results briefly. An appendix is
added in order to complement the results of Section 3.

2 The bulk system

2.1 Bare theory

For simplicity here we will consider the model with pure
long-range ferromagnetic interaction i.e. the parameter σ
controlling the range of the interaction is smaller than
2, value characterizing the short range interaction. In
other words, we will consider the model (1.1) with the
parameters a = 0 and b = 1. We believe that one has
first to understand this model before starting to explore
the model with both long and short-range interactions
present. The investigation of the critical properties of the
complex structure of this model will presented elsewhere.

It has been shown that the Hamiltonian with pure
long-range interaction can be treated with field theoretical
renormalization group techniques [5]. The renormalization
constants as well as the field theoretic functions were cal-
culated. A superficial discontinuity of the anomalous di-
mension of field theories occurs as soon as σ = 2. This
however is true only at this particular point, and as long
as we are far from that point, we can use the model with
the spectrum r0 + |k|σ. In this case the renormalization
constants, to one loop order, are given by:

Zϕ = 1 +O(u2) (2.1a)

Zr = 1 +
n+ 2
ε

u+O(u2) (2.1b)

Zu = 1 +
n+ 8
ε

u+O(u2)· (2.1c)

Here, as usual, Zϕ is the scaling field amplitude, Zu the
coupling constant renormalization, and Zr the renormal-
ization of the ϕ2 insertions in the critical theory. The pa-
rameter ε = 2σ − d denotes the deviation from the upper
critical dimension.

The application of the method proposed by the authors
of references [18–20] to systems with pure long-range in-
teraction can be established easily following the way this
has been done in combination with the ε expansion [5].
In particular we turn our attention to the inverse bare
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susceptibility, related to the two-point vertex function, at
finite external wave-number k

1
0
χ(k)

= Γ
0(2)(k, r0, u0, Λ, d). (2.2)

This function is, of course, well defined at T & Tc for
dimensions d > σ. The parameter r0 is, as usual, a linear
function of the reduced temperature t = (T − Tc)/Tc. Its

critical value is determined by the condition
0
χ(0)−1 = 0,

from which we obtain a natural implicit definition for the
function

r0c ≡ r0c(u0, Λ, d). (2.3)

Following reference [18], we will consider the difference
r0 − r0c, which is a function of the correlation length (i.e.
r0 − r0c = h(ξ, u0, d)), instead of r0 itself into the expres-
sions for the different vertex functions. So, we will consider
the vertex functions Γ

0(N) as depending on the parameters
r0−r0c, u0, Λ and d. We will denote the dimensionally reg-
ularized vertex function by Γ

0(N) ≡ Γ
0(N) (r0 − r0c, u0, d).

Correspondingly the dimensionally regularized critical pa-
rameter r0c will be denoted by r0c(u0, d). From simple di-
mensional arguments, one obtains the relation

r0c ∝ uσ/ε0 . (2.4)

The method used here differs from the ones when the ε
expansion come into play, by the fact that the critical pa-
rameter r0c is non-vanishing within the dimensional reg-
ularized theory. It is clear that the use of the ε expansion
implies an apparent vanishing of r0c, as seen formally from
the relation (2.4) between r0c and u0, which for infinites-
imal ε does not yield a contribution at finite order to the
perturbation theory.

In order to make clear the definitions introduced along
this section, we will present here the one-loop results. For
the two point vertex function we get

Γ
0(2) = r0 + kσ − (n + 2)u0Ad,σ

r
−ε/σ
0

ε
+ O(u2

0), (2.5)

where the geometrical factor Ad,σ is defined by

Ad,σ =
2

(4π)d/2Γ (d/2)
Γ
(

1 +
ε

σ

)
Γ
(

1− ε

σ

)
· (2.6)

The four point vertex function is

Γ
0(4) = u0 − (n+ 8)u2

0Ad,σ

(
1− ε

σ

) r−ε/σ0

ε
+O(u2

0) ·
(2.7)

In the next section we will discuss the renormalization of
the bare theory for fixed dimension d confined between
the lower and the upper critical dimensions given by σ
and 2σ, respectively.

2.2 Renormalized theory

It is well known, that the perturbative results of the bare
theory do not provide a correct description in the critical
region ξ →∞, for dimensions below the upper critical di-
mension. This can be outwitted by taking advantage of the
ideas of the renormalized theory, which furnishes a map-
ping from the critical region to non-critical one. Our start-
ing point is the expression for theN -point vertex functions
Γ̃N0 (ξ, u0, d) obtained from Γ

0(N) (r0 − r0c, u0, d) by switch-
ing from the variable r0−r0c to ξ. This is possible because
of the fact that the reduced temperature is tightly related
to the correlation length. The deviation of the parameter
r0 from its critical value will be a fixed quantity and hence
the correlation length will have the same property.

We treat the theory by using the minimal subtraction
scheme at fixed dimension d. To this end, we introduce
the renormalized quantities

ϕ(x) = Z1/2
ϕ ϕR(x) (2.8a)

r0 = r0c + Zrr, r0 − r0c > 0 (2.8b)
Ad,σu0 = µεZuZ

−2
ϕ u· (2.8c)

Then the renormalized vertex functions takes the form

Γ̃ (N)(ξ, u, µ, d) = ZN/2ϕ Γ̃N0 (ξ, µεZuZ−2
ϕ uA−1

d,σ, d) · (2.9)

In addition, we require that the renormalization constants
Zϕ and Zu absorb just the poles of Γ̃N0 at the upper critical
dimension, which turns out to be 2σ for the model under
consideration. In equations (2.8) and (2.9) the parameter
µ is an inverse reference length, which will be chosen as
the amplitude of the asymptotic bulk correlation length.

In the following we proceed in a standard way, by
deriving a differential renormalization-group equation for
the vertex function Γ̃ (N). This is achieved by taking the
derivative of equation (2.9) with respect to µ at fixed con-
stant u0 and r0 − r0c. This leads to

[µ∂µ+ βu(u, ε)∂u +
1
2
Nζϕ(u)]Γ̃ (N)(ξ, u, µ, d) = 0,

(2.10)

with

βu(u, ε) = (µ∂uu)0, ζϕ(u) = (µ∂µ lnZ−1
ϕ )0 ·

(2.11)

Here the subscript 0 indicates that the differentiation is
performed at fixed parameters of the bare theory. Using
the method of characteristics, a formal solution of the
renormalization-group differential equation (2.10) is given
by

Γ̃ (N)(ξ, u, µ, d) = Γ̃ (N)(ξ, u(`), `µ, d)

× exp

(
N

2

∫ `

1

ζϕ(`′)
d`′

`′

)
· (2.12)

Here ζ(`)(u(`), d) and u(`) is the solution of flow equation

`
du(`)

d`
= βu[u(`), d] (2.13)
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with the initial condition u(`) = u. The most convenient
choice for the flow parameter ` is

`µ = ξ−1 · (2.14)

The renormalized vertex functions can be written as

Γ̃ (N)(ξ, u, µ, d) = ξ−d+(d−σ)N2 f (N)(µξ, u, d), (2.15)

where the amplitude functions f (N) are dimensionless.
The renormalizability of the ϕ4 model with long-range
interaction for dimensions d less than the upper critical
dimension 2σ is a warranty for the finiteness of the Γ̃ (N)

at fixed u, µ and ξ. From (2.12, 2.14) and (2.15), we obtain
the expression

f (N)(µξ, u, d) = f (N)(1, µ(`), d)

× exp

(
N

2

∫ `

1

ζϕ(`′)
d`′

`′

)
· (2.16)

As usual, equation (2.16) lies in the basis of the mapping
of the amplitude function f (N)(µξ, u, d) from the critical
region, where the perturbation theory breaks down to the
noncritical region, where the perturbation theory is appli-
cable.

2.3 Asymptotic regime

In the asymptotic limit, determined by (` → 0, ξ → ∞),
the coupling u(`) approaches the fixed point u∗ = u(0),
which is the zero of the β function of the theory i.e.

βu(u∗, 0, d) = 0. (2.17)

For ξ →∞, equation (2.16), takes the asymptotic form

f (N)(µξ, u, d) ∼ A(N)f (N)(1, u∗, 0, d)(µξ)Nη/2, (2.18)

with the critical exponent η = −ζϕ(u∗, 0, d) and the
nonuniversal amplitude

A(N) = exp
(
N

2

∫ 0

1

[ζϕ(`′)− ζϕ(0)]
d`′

`′

)
· (2.19)

The results obtained here can be applied very easily to
the particular case of the bare susceptibility corresponding
to the particular value N = 2. This is given by

χ = Zϕ(u, d)ξ2[f (2)(1, u(`), d)]−1

× exp
(∫ 0

`

ζϕ(`′)
d`′

`′

)
· (2.20)

The critical behaviour above Tc reads

χ = A+
χ t
−γ , (2.21)

where

A+
χ = ξ2

0Zϕ(u, d)[A(2)f (2)(1, u∗, 0, d)]−1. (2.22)

Here we have used µ = ξ−1
0 and the asymptotic form ξ =

ξ0t
−ν with γ = ν(2− η).

3 The finite system

3.1 The effective Hamiltonian

For the evaluation of the effective Hamiltonian of the fi-
nite system, we need to calculate the free energy per unit
volume. This is defined by

f = −L−d lnZ; Z =
∫
Dϕ exp(−βH). (3.1)

Here we are also interested in the expression of the sus-
ceptibility, which is defined by

χ =
∫

ddx 〈ϕ(x)ϕ(0)〉

=
1
Z

∫
ddx

∫
Dϕϕ(x)ϕ(0) exp(−βH)· (3.2)

Following references [26,27], we split the field ϕ =
Φ+Σ into a mode independent part

Φ = L−d
∫

ddxϕ(x), (3.3)

which is equivalent to the magnetization and a part de-
pending upon the non zero modes

Σ = L−d
∑
k

′
ϕ(k) exp(ik · x). (3.4)

Consequently (1.1) is decomposed as

H = H0 +HI(Φ,Σ), (3.5)

with the zero-mode Hamiltonian

H0 =
1
2
Ld
(
r0Φ

2 +
1
2
u0Φ

4

)
· (3.6)

Whence the partition function takes the form

Z =
∫ ∞
−∞

dΦ exp[−(H0 + Γ
0
(Φ2))], (3.7)

where

Γ
0
(Φ2) = − ln

∫
DΣ exp[−HI ] (3.8)

contains the contribution from higher order.
Now instead of the decomposition of reference [27] we

will use the modified perturbation theory proposed in ref-
erence [21]. There, an appropriate decomposition of the
O(n) vector ϕ4 model with short-range interaction has
been presented. This way has been proven to give a good
quantitative results above, as well as below the critical
temperature Tc. Applying that method to our model we
find, that the higher-mode dependent part HI can be split
into

HI =
1
2

∫
ddx[(r0 + (n+ 2)u0M

2
0 )Σ2 + (∇σ/2Σ)2]

+
1
2

∫
ddx[3u0(Φ2 −M2

0 )Σ2 + 2u0ΦΣ
3 +

1
2
u0Σ

4],

(3.9)
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where we have introduced the magnetization

M2
0 =

〈
φ2
〉
· (3.10)

Further a diagrammatic expansion of Γ
0
(Φ2) can be repre-

sented by two point vertices proportional to u0(Φ2 −M2
0 )

in addition to the three and four point vertices ∼u0Φ and
∼u0. In this way, the finite-size perturbation theory is ob-
tained as an expansion of Γ

0
(Φ2) in powers of u0(Φ2−M2

0 ),
u0 and u2

0Φ
2. In the following, instead of Γ

0
(Φ2) we con-

sider L−dΓ
0
(Φ2) which remains finite in the limit L→∞.

To the leading order the finite-size correction reads

L−dΓ
0
(Φ2) =

1
2

∑
k

′
ln(r0 + (n+ 2)u0M

2
0 + kσ)

+
n+ 2

2
u0Φ

2S1(r0)− n+ 8
4

u2
0(Φ4 + 2M2

0Φ
2)S2(r0)

+O(u0, u
2
0φ

2, u3
0(Φ2 −M2

0 )3), (3.11)

where

Sm(r) = L−d
∑
k

′
(r + (n+ 2)u0M

2
0 + kσ)−m. (3.12)

Here we will investigate only the high temperature
regime i.e. T & Tc, so we will set M2

0 = 0. A rearrange-
ment of equations (3.6) and (3.11) leads to the effective
Hamiltonian

Heff(r0, u0, L, Φ
2) =

1
2
Ld[RΦ2 +

1
2
UΦ4 +O(Φ6)],

(3.13)

where

R = r0 + (n+ 2)u0L
−d
∑
k

′
(r0 + kσ)−1, (3.14a)

U = u0 − (n+ 8)u2
0L
−d
∑
k

′
(r0 + kσ)−2. (3.14b)

Finally, the free energy (3.1) reads

f = L−dΓ
0
(0)− L−d lnZeff , (3.15a)

Zeff =
∫ ∞
−∞

dΦ exp[Heff(r0, u0, L, Φ
2)] (3.15b)

and averages such as
〈
Φ2p
〉

are calculated from (3.2) as〈
Φ2p
〉

=
1
Z eff

∫ ∞
−∞

dΦΦ2p exp(−Heff(r0, u0, L, Φ
2)).

(3.16)

Let us note that for the purpose of comparison with nu-
merical results it is convenient to keep the exponential
structure of the integrand in the various thermodynamic
functions. Notice that an appropriate rescaling of the field
Φ in equation (3.16), permits to write the momenta

〈
Φ2p
〉

as a function the ‘scaling variable’

z = RLd/2U−1/2. (3.17)

Whence

〈
Φ2p
〉

= (u0L
d)−p/2

×
∫∞

0
dxxn+2p−1 exp

(
− 1

2zx
2 − 1

4x
4
)∫∞

0 dxxn−1 exp
(
− 1

2zx
2 − 1

4x
4
) · (3.18)

These functions can be expressed in terms of the confluent
hypergeometric function (see Appendix A).

3.2 Renormalization

As it has been mentioned in the previous section, in this
paper, we will use the approach of references [18–20]. Here
we will consider the limit of an infinite cutoff i.e. Λ→∞
at fixed r0 − r0c, where r0c is the bulk critical value of
r0. Let us recall that the advantage of using this method
is its direct application to fixed space dimensionality d,
without resorting to the ε expansion. For systems with
short-range interaction this method has been tested and
accurate results, for various thermodynamic functions has
been, obtained [21]. Since r0c is of order O(uσ/20 ) in di-
mensionally regularized form, we find it safe to replace in
our expressions r0 by the difference r0 − r0c. The effec-
tive Hamiltonian will be function of r0− r0c but not of r0
itself. The effective constants R and U defined in (3.14)
are also functions of this deviation, which itself is a func-
tion of the correlation length. The perturbation approach
consists of an expansion of Heff with respect to the renor-
malized counterpart u of the coupling constant u0 at fixed
dimension. Since the finite nature of the geometry of the
system does not alter the ultraviolet divergences, the usual
bulk renormalizations are enough to describe the scaling
properties the finite system.

Here we are interested in the evaluation of the ex-
plicit expressions of various thermodynamic quantities for
the finite system. Different crossover regions, in terms of
renormalized parameters, are under consideration. The
corresponding renormalized effective coupling constants to
equations (3.14) take the form

R = r(`) + (n+ 2)u(`)(µ`)σ

×
[
r(`)(µ`)−σ

ε

[
1−

(
r(`)

(µ`)σ

)−ε/σ]

+
(µL)ε−σ

Ad,σ
Fd,σ(r(`)Lσ)

]
, (3.19a)

U = u(`) + u2(`)(n+ 8)

[
1
ε

[
1−

(
r(`)

(µ`)σ

)−ε/σ]

+
1
σ

(
r(`)

(µ`)σ

)−ε/σ
+

(µL)ε

Ad,σ
F ′d,σ(r(`)Lσ)

]
, (3.19b)
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where we have used the definitions [17]

S1(r) = −Ad,σε−1r1−ε/σ + Lσ−dFd,σ(rLσ) (3.20a)

S2(r) = Ad,σε
−1
(

1− ε

σ

)
r−ε/σ

−Lσ−d ∂
∂r
Fd,σ(rLσ), (3.20b)

and

Fd,σ (y) =
1

(2π)σ

∫ ∞
0

dxx
σ
2−1Eσ

2 ,
σ
2

(
−yx

σ/2

(2π)σ

)

×

( ∞∑
`=−∞

e−x`
2

)d
− 1−

(π
x

)d/2 · (3.21)

Here the function

Eα,β(z) =
∞∑
k=0

zk

Γ (αk + β)
(3.22)

is the so called Mittag-Leffler type functions. For a more
recent review on these functions and others related to
them, and their application in statistical and continuum
mechanics see reference [28]. A brief summary of some of
the properties of the Mittag-Leffler functions are presented
in reference [17].

By making the choice such that the flow parameter
` = `(t, L) satisfies the following relation

ξ−σ + L−σ = µσ`σ, (3.23)

in the critical region, equations (3.19) imply the scaling
forms

R(`) = µσ`σR̃(tL1/ν), U(`) = Ũ(tL1/ν). (3.24)

Using the asymptotic expressions for R(`) and U(`), we
obtain the asymptotic form of the variable z, defined in
(3.17). It is given by

z(tL1/ν) = R(`)µ−2`−2(Lµ`)d/2A1/2
d [U(`)]−1/2. (3.25)

From this expression, one can convince himself, easily, that
the function z(tL1/ν) has an expansion in terms of

√
u∗.

3.3 The susceptibility

In this section, we present our result for the finite-size
scaling function of the magnetic susceptibility. Here we
give the general expression, obtained by expanding with
respect to the coupling constant u about its fixed point
u∗. The dimension is kept fixed i.e. we are not going to
expand in the vicinity of the upper critical dimension as it
has been done earlier [17]. Furthermore, we won’t expand
the exponential weight of the integrand in equation (3.16).
In this way consistency with the correct one-loop bulk ex-
pressions is ensured in the bulk limit, reached by send-
ing the size L of the system to infinity. As it has been

mentioned in the previous sections the arbitrary reference
length µ−1 of the renormalized theory will be chosen as
the amplitude of the correlation length i.e. µ−1 = ξ0.

In reference [29], it has been shown that, for periodic
boundary conditions, the ultraviolet divergences of the
susceptibility χ of finite systems in the continuum limit
i.e. a → 0 are identical to those of the bulk susceptibil-
ity χb. In reference [17], the application of this method
has been extended to systems with long-range interaction
and some results for the susceptibility in the asymptotic
regimes L/ξ � 1, as well as L/ξ � 1 has been obtained.
The results obtained there were limited to dimensions
close to the upper critical one. Here we will extend these
results to the whole interval of dimensions between the
lower critical dimension d< = σ and the upper critical
one d> = 2σ.

The average
〈
φ2
〉
, entering the definition of the sus-

ceptibility (3.2), is defined with the statistical weight
exp[−(H0 + Γ

0
)] given in equation (3.7). Obviously, in

the bulk limit we recover the bulk susceptibility i.e.
limL→∞ χ = χb.

For systems confined to a finite geometry, the renor-
malized susceptibility χR, as a function of r0 − r0c , u0,
and L, can be introduced as

χR(ξ, u, L, µ, d) = Z−1
ϕ χ(ξ, µεZuZϕAd,σu, L, d), (3.26)

where Zϕ and Zu are the bulk Z amplitude factors defined
in Section 2.

A renormalization-group equation for χR is obtained
by deriving expression (3.26) for the susceptibility with
respect to the parameter µ at fixed r0 − r0c (function of
the correlation length), u0 and d. Since the linear size L
of the system does not renormalize, we get

[µ∂µ + βu∂u − ζϕ]χR(ξ, u, L, µ, d) = 0, (3.27)

where the renormalization group functions β(u) and ζ(u)
are defined in equation (2.11) for the bulk theory. A formal
solution for this equation is given by

χR(ξ, u, L, µ, d) = χR(ξ, u(`), L, `µ, d)

× exp
(∫ 1

`

ζϕ(`′)
d`′

`′

)
, (3.28)

where the parameter ` can be chosen arbitrarily. The most
convenient choice is that, for which ` satisfies the relation
(3.23). Remark that the renormalization group equations
(2.10) for the bulk system and (3.27) for the system con-
fined to the finite geometry are similar. However because
of the finiteness of the size L of the system a careful con-
sideration of equations (3.27) and its solution (3.28) is in
order. In this case, we introduce the dimensionless ampli-
tude function fχ(z) according to

χR(L, ξ, u, µ, d) = L2fχ(µL, µξ, u, d). (3.29)

In the asymptotic regime, given by `� 1, we obtain from
the formal solution (3.28) of the renormalization group
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equation

χR(L, ξ, u, µ, d) ∼ L2`η
[
A(−2)

]
fχ(µ`L, µ`ξ, u∗, d).

(3.30)

Using the fact that µ`L and µ`ξ are functions only of the
ratio L/ξ, which follows from equation (3.23), we can write
the bare susceptibility χ = ZϕχR, as well as, the renor-
malized susceptibility χR in the following scaling form

χR(L, ξ, u, µ, d) ∼ L2−ηµη
[
1 +

(
L

ξ

)σ]η/σ
×
[
A(−2)

]
Y

(
L

ξ

)
, (3.31)

where Y (z) is a scaling function of its argument.
Equation (3.31) is the final expression for the suscepti-

bility of the finite system. This is the complete expression
in whole L−1−ξ−1 plane. In the following we will consider
different regimes with respect to the ratio ξ/L. For this
purpose we investigate the O(n) vector ϕ4 model. Here we
turn a special attention to the limiting case ξ/L� 1.

In the remainder of this section we will investigate the
behaviour of the susceptibility using an ordinary perturba-
tion theory. Accordingly, the standard one-loop expression
for the inverse susceptibility above the critical point for a
system confined to a finite geometry reads

χ−1 = r0 + (n+ 2)u0L
−d
∑
k

(r0 + kσ)−1 +O(u2
0).

(3.32)

The susceptibility for the bulk system is obtained by send-
ing the size of the system to infinity i.e. the sum in the
last equation is replaced by integrals. It is

χ−1
b = r0 + (n+ 2)u0

∫
ddk(r0 + kσ)−1 +O(u2

0).

(3.33)

After some straightforward calculation one gets

χ(t, u0, L, d)−1 = t
[
1 + (n+ 2)u0L

2σ−d(tLσ)−2

× (1 + tLσFd,σ(tLσ))] . (3.34)

From this expression, we see that it is not allowed to set
y = 0. In other words to take the limit t→ 0, while the size
of the system is kept fixed. In the opposite limit L/ξ � 1,
the right hand side of equation (3.34) is well defined and
the result gives the finite-size correction to the expression
of the bulk susceptibility. However, the behaviour of the
function Fd,σ(y) is strongly dependent upon the value of
the parameter σ. Indeed, it depends upon the nature of
the interparticle interaction in the system. Here we will
discuss the influence of the interaction on the behaviour
of the finite-size correction.

The function Fd,σ(y) has the following large y asymp-
totic behaviour [17]

Fd,σ(y) ' −1
y

+
2σπ−d/2Γ

(
d+σ

2

)
y2Γ (−σ2 )

∑
l

′ 1
|l|d+σ

(3.35)

for the case 0 < σ < 2, and

Fd,2(y) ' −1
y

+ d(2π)(1−d)/2y(d−3)/4e−
√
y (3.36)

for the particular case σ = 2. These results show that the
last term in equation (A.9) is just cancelled by the first
term in equations (3.35) and (3.36).

In the case of long-range interaction 0 < σ < 2, we ob-
tain for the susceptibility, after renormalizing the theory,

χ = χb

[
1− u∗(n+ 2)2σπ−d/2 (tLσ)−1− dσ

×
Γ
(
d+σ

2

)
Γ (−σ2 )

∑
l

′
l−d−σ +O(u∗2)

]
(3.37)

in agreement with the finite-size scaling hypothesis. Equa-
tion (3.37) shows that the finite-size scaling behaviour of
the system is dominated by the bulk critical behaviour,
with small correction in powers of L. First the power law
fall-off of the finite-size corrections to the bulk critical be-
haviour, due to long-range nature of the interaction, was
found in the framework of the spherical model [30,31],
which is believed to belong to the same class of universal-
ity as the O(n) vector model with n→∞.

It should be noted that the above result (3.37) cannot
be continued smoothly to the case of short-range interac-
tion σ = 2. In this particular caseFd,2(y) (see Eq. (3.36))
falls off exponentially fast and, correspondingly, the finite-
size corrections to χ are exponentially small:

χ = χb
[
1− u∗(n+ 2)d(2πtL2)(1−d)/4e−L

√
t +O

(
u∗2
)]
.

(3.38)

This result was obtained first in reference [23]. Notice that
by expanding to the first order in ε = 2σ − d in equa-
tion (3.37) and (3.38), we recover, the corresponding re-
sults (3.10) and (3.31) of reference [17].

Here an important remark is in order. In Appendix A,
we show that the results obtained for the susceptibility in
this section are identical to those obtained, using the mode
expansion. This is in disagreement with the conclusions of
reference [23] claiming that the mode expansion is inad-
equate for the description of the finite-size scaling in the
region of the phase diagram determined by the condition
L/ξ � 1. Especially for the case of short-range interaction
this result is in agreement with that obtained by means
of Monte Carlo.

4 Discussion

In this paper, we have investigated the finite-size scaling
properties in the O(n)-symmetric ϕ4 model with long-
range interaction potential decaying algebraically with the
interparticle distance. By means of the method, which
consists of the use of the minimal subtraction scheme ap-
plied to a fixed space dimensionality developed in refer-
ences [18–20] for the bulk system and in [21–23] for the
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one with finite linear size, we generalized the results of
reference [17] obtained for the susceptibility by means of
the ε = 2σ − d expansion. The obtained results are in a
full agreement with those obtained in reference [17].

Here we restricted our calculation to the critical do-
main T & Tc and investigated the behaviour of the sus-
ceptibility to the one-loop order in the coupling constant
u0 of the bare theory. We have turned our attention to
the special case, in the phase diagram, where the bulk
critical behaviour is dominating the finite-size scaling one.
We have found that the finite-size correction falls off al-
gebraically (3.37) in the case when σ < 2 and exponen-
tially (3.38) in the particular case σ = 2, characterizing
the short-range interaction. These results are obtained by
using two different methods: (i) The standard mode ex-
pansion of references [26,27] and (ii) The ordinary pertur-
bation theory used in references [22,23]. We would like to
mention here that our results does not agree with those
of reference [23] claiming that the method built on the
mode expansion does not adequately describe the critical
behaviour of the finite system.

Note that by evaluating the Binder’s cumulant ratio,
we obtain a result, which have the same behaviour as a
function of ε as that of the result of references [16,17].
It seems that to the first loop order, the method used
here does not ameliorate the result obtained by means
of the ε-expansion. It is possible that higher loop order
can improve the result in comparison to the Monte Carlo
method of reference [16].

In this paper, we concentrated our attention to a field
theoretical model in the continuum (scaling) limit. Con-
sequently the cutoff is send to infinity. By accounting the
finite cutoff effects we expect that the finite-size scaling
will be violated in a similar way to the case short-range
interaction [22]. Note that the same effects can be ob-
tained if one takes the model (1.1) with the parameter σ
controlling the range of the interaction to be larger than
the value, σ = 2, characterizing the short potential. This
would verify whether the results obtained in references [32]
at the spherical limit remains true for finite n.

Another possible extension of the results obtained
here, in the static limit, is the application of the finite-
size scaling theory to systems including critical dynamics.
This can have direct implication to so systems exhibiting
quantum critical behaviour.

The author would like to thank Profs. V. Dohm and N.S.
Tonchev for stimulating discussions. The hospitality of the In-
stitute of Theoretical Physics of RWTH-Aachen is acknowl-
edged.

Appendix A: Finite-size corrections to the bulk
susceptibility

In the appendix, we evaluate the finite-size correction to
the bulk susceptibility in the region L/ξ � 1 for arbitrary
dimension of the system. Here we use the mode expansion
and we will work in the one loop order as explained in

Section 3. We are interested in particular in dimensions d,
such that σ < d < 2σ. In the leading order of the non-zero
(k 6= 0) modes the effective Hamiltonian (3.13) reads

Heff(r0, u0, L, Φ
2) =

1
2
Ld[RΦ2 +

1
2
UΦ4 +O(Φ6)], (A.1)

where

R = r0 − r0c + (n+ 2)u0

×

L−d∑
k

′
(r0 − r0c + kσ)−1 −

∫
k
k−σ

 , (A.2a)

U = u0 − (n+ 8)u2
0L
−d
∑
k

′
(r0 − r0c + kσ)−2. (A.2b)

We have incorporated here the finite shift r0c = −(n +
2)u0

∫
k k
−σ+O(u0) of the parameter r0 at one loop-order.

Let us recall that in general one does a double expansion:
one in the modes and the other in the coupling constant
u0. In other words the fact that we are working in fixed
space dimension does not mean that the parameter u0

should be kept fixed or we are not allowed to expand with
respect to the small parameter u0. This observation will
be of a great importance in the following.

In the one-loop order the difference r0 − r0c is propor-
tional to the reduced temperature t i.e. r0 − r0c = at. In
the following we will choose the coefficient a = 1. In terms
of t, equations (A.2) reads

R = t− (n+ 2)u0∆1(t), (A.3a)

U = u0 − (n+ 8)u2
0

∫
k

(t+ kσ)−2

+(n+ 8)u2
0∆2(t), (A.3b)

where

∆m =
∫
k

(t+ kσ)−m − L−d
∑
k

′
(t+ kσ)−m. (A.4)

Now we will evaluate the susceptibility for the system
confined to a finite geometry. In the present approximation
it is

χ =
1
n

√
Ld

U
Gχ

(
R

√
Ld

U

)
, (A.5)

with

Gχ(z) =

∫∞
0

dxxn+1 exp
(
− 1

2zx
2 − 1

4x
4
)∫∞

0
dxxn−1 exp

(
− 1

2zx
2 − 1

4x
4
) · (A.6)

The integrals appearing in equation (A.6) can be ex-
pressed in terms of the confluent hypergeometric function
U(a, b; z) according to∫ ∞

0

dyyν−1e−z
y2

2 −
y4

4 =
1
2
Γ
(ν

2

)
U

(
ν

4
,

1
2

;
z2

4

)
,

for z ≥ 0. (A.7)
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This function has a well known analytic properties (see
Ref. [33]).

In the region tL1/ν � 1, corresponding to z � 1,
using the asymptotic form of the function G(z) for large
argument, which follows from that of the confluent Hy-
pergeometric function, we obtain for the susceptibility

χ =
1
R

[
1− (n+ 2)

U

LdR2

]
· (A.8)

Here we would like to mention that this result is not the
final expression for the susceptibility of the finite system.
Here it easy to make a mistake by taking, to the lowest
mode approximation, the coupling constants R and U to
be equal to the initial coupling constants r0 − r0c and u0,
respectively. One has to keep in mind that apart from the
lowest mode approximation, a loop expansion in u0 is in-
volved in the calculations. So, here one must take into
account the full expressions of the constants R and U up
to the lowest (one-loop) order in u0. Consequently by ex-
panding in equation (A.8) to order O(u2

0) we arrive to the
final result for the susceptibility

χ = t−1

[
1− (n+ 2)u0

L2σ−d

y2
(1 + yFd,σ(y))

]
· (A.9)

Here we have used y = tLσ and ∆1(t) ≡
−L2σ−dFd,σ(tLσ). As one sees equations (3.34) and (A.9)
are similar and all what it has been written after equa-
tion (3.34) remains true here. The conclusion we can draw
from here is that both the ordinary perturbation theory and
the method based on the mode expansion give only one and
the same result for the susceptibility in the region, where
the bulk properties of the system are dominating the crit-
ical behaviour of the system i.e. in the region L/ξ � 1.
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